STUDY COURSES

Biomechanics I (RBA)

Biomechanics I – Introduction | Biomechanics I is an introductory course into biomechanics. This course introduces terminology and provides basic knowledge necessary for interdisciplinary communication with medical staff, specifically about the structure and function of cells, tissues and organs; therefore, basic knowledge on human anatomy, histology, physiology and pathology is provided. In the part dedicated to biomaterial engineering, the course focuses on constitutive and strength properties of basic biomaterials (collagen, elastin), and on properties of some materials being used in implants (e.g. austenitic steels, alloys, high-pressure-polyethylene, and ceramics). Using the systemic approach, various aspects of computational modelling are presented as well as medical imaging techniques whose outputs are used for creating computational models. An illustration of various biomechanical problems is presented as well.

Supervisor: Ing. Petr Marcián, Ph.D.

Language: cs

Materials:




Biomechanics II (RBI)

Biomechanics II – Musculoskeletal | Basic parts of the human body related to the musculoskeletal system, their names, position and function. Basic elements of the musculoskeletal system, their description in terms of anatomical, physiological and mechanical. Bone tissue, types, physical and mechanical properties. Bone, definition, types of bones. Connection of bones, joint. Joint development, division of joints, movements in joints. Joint from a mechanical point of view, modeling of joints. Muscle division, muscle types, muscle attachments. Parts of the human body: lower limb, pelvis and connections on the pelvis, spine, upper limb, chest and skull. Description in terms of anatomical, physiological and mechanical. Health problems of the mentioned parts of the human body related to mechanical movement – fractures of limbs and their fixation, loss of joint function and their replacements, problems on the spine – growth, traumatology and degeneration and their solutions related to the biomechanics of the spine.

Supervisor: doc. Ing. Zdeněk Florian, CSc.

Language: cs

Materials:




Biomechanics III (RBM)

Biomechanics III – Cardiovascular | The course starts with basic information on structure of cardiovascular system, its anatomy, physiology, histology and atherosclerosis as its most frequent pathology. An overview of basic reological properties of blood is presented, as well as constitutive models for description of its non-Newtonian behaviour. The course presents the structure of relevant soft tissues, ways of its analysis at the level of cells and fibres, impact of the structure on mechanical behaviour of the tissue and possibilities of its constitutive description. All this is applied in computational models of animal cells, arteries and heart chamber, created in ANSYS software. Further, the course deals with technical fundamentals of therapeutic treatments and man-made replacements used at cardio-vascular system (vascular grafts, arterial stents, artificial heart valves, artificial heart pumps). The course deals with their technical principles, materials, production technology and basic requirements of biocompatibility.

Supervisor: prof. Ing. Jiří Burša, Ph.D.

Language: cs

Materials:




Biomechanics IV (RBK)

Biomechanics IV – Bioacoustics | Bioacoustics deals with human organs and organs of other living creatures whose function is in some way tied to the use of sound waves, collectively to the use of acoustics. Bioacoustics deals mainly with human speech generation and hearing perception. The source voice is generated by vocal folds and is further acoustically modified by passing through the vocal tract. The auditory organ captures acoustic waves from the surrounding environment and processes them by means of complicated electro-mechanical systems into the signals, which are then supplied to the brain. The course is also devoted to computational models of vibroacoustic systems – deterministic models (finite element method FEM, boundary element method BEM), statistical models (statistical energy analysis SEA), hybrid models (FEM + SEA).

Supervisor: Ing. Pavel Švancara, Ph.D.

Language: cs

Materials:

  • :download:` <_static/files/bio-IV/nothing-there-yet>`




Constitutive Equations for BIO (RKB-A)

The course provides a comprehensive overview of constitutive dependencies and constitutive models of matters, not only of solids (i.e. structural materials) but also of liquids and gases. It deals with time dependence of stress-strain response of materials and describes it using different viscoelastic models. It introduces the theory of finite strains and applies it in description of non-linear elastic as well as poroelastic and non-elastic behavour of soft biological tissues, also with taking their anisotropy caused by their fibrous structure into consideration. Models accounting for waviness and directional dispersion of collagen fibres in the tissues are adressed. Also other specific properties of biological tissues absent at technical materials are presented, including their impact on procedures of mechanical testing and ways how to take them into consideration in constitutive models of soft tissues. For each of the presented models basic constitutive equations are formulated, on the basis of which the response of the tissue under load is derived using both analytical and numerical (FEM) methods, including applications of the models in ANSYS software.

Supervisor: prof. Ing. Jiří Burša, Ph.D.

Language: en

Materials: